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Abstract 

Experimental data of quasicrystal structures are con- 
sidered from the point of view of a crystal-chemical 
model of atomic interactions (CCMAI) developed 
earlier. It is demonstrated that a quasicrystal consists 
of adjoining clusters. Each cluster has an icosahedron 
as the nucleus of the cluster and a few coordination 
shells. All clusters are truncated except for the central 
one. The distribution of icosahedral nuclei of clusters 
is stochastic so that there is orientational order of the 
icosahedral nuclei without translational symmetry. 
As a result the atoms are distributed in accordance 
with a slightly distorted three-dimensional Penrose 
tiling. This approach explains the very close 
resemblance of the crystal and quasicrystal structures 
of substances under consideration and shows the 
process of quasicrystal formation. The existence of 
the quasicrystals predicted earlier [Aslanov (1989). 
Acta Cryst. A45, 671-678] with the atomic subsystem 
having translation symmetry is discusseed on the basis 
of the experimental facts. 

Introduction 

A crystal-chemical model of atomic interactions 
(CCMAI) has allowed us to explain on a common 
basis crystal structures with different chemical com- 
positions, types of chemical bonds, package densities 
and so on (Aslanov, 1988a, b, 1989a, b; Aslanov & 
Markov, 1989). An attempt was made to test the 
prognostic ability of CCMAI, and for this purpose 
the principles of quasicrystal formation were con- 
sidered and illustrated with a hypothetical example 
(Aslanov, 1989a, b). After the manuscripts (Aslanov, 
1989a, b) had been sent to press a few papers 
appeared (Cahn, Gratias & Mozer, 1988a, b; Elswijk, 
De Hosson, Van Smaalen & de Boer, 1988; Gratias, 
Cahn & Mozer, 1988) in which the results of experi- 
mental solutions of quasicrystal structures were 
described. It was natural to verify whether the predic- 
ted principles of the formation of quasicrystal struc- 
tures (Aslanov, 1989a, b) agree with the experimental 
results. Also, some experimental facts (Mai, Tao, 
Zeng & Zhang, 1988; Mai, Zhang, Hui, Huang & 
Chen, 1988) can be interpreted in favor of ideas on 
the existence of quasicrystals with a translationally 
symmetrical subsystem of atoms (Aslanov, 1989a, b). 

0108-7673/91/020063-08503.00 

Analysis and discussion 

The structure of an icosahedral quasicrystal, with 
composition close to Ag6CuLi3, has been investigated 
by Elswijk et al. (1988) using a single quasicrystal 
and an Enraf-Nonius CAD-4F diffractometer. The 
structure was solved by the trial-and-error method; 
atoms were distributed at vertices, midpoints of edges, 
centers of faces and at some specific points on 
diagonals of the rhombohedra incorporated in the 
three-dimensional Penrose tiling (3D PT). One of two 
versions gave R --0.41 and the other R --0.07, prov- 
ing the correctness of the second model, which took 
into account the isotropic temperature factors of 
atoms. Later Van Smaalen (1989) confirmed this 
structure by a solution of the three-dimensional 
Patterson function. 

The analysis of a quasicrystal structure allowed the 
conclusion that the quasicrystal structure is quite 
similar to the structure of the A15CuLi3 crystal [space 
group Ira3, a = 13.91 (1 )~ ] ,  which was solved by 
Cherkashin, Kripyakevich & Oleksiv (1963) and was 
refined later (Elswijk et al., 1988; De Boissien, Janot, 
Dubois, Audier & Dubost, 1989). The main result of 
these two refinements was the interchange of positions 
of one of the lithium atoms with one of the alumi- 
nium atoms. Also, the paper by De Boissien et al. 
(1989) insisted that the twofold position, denoted 
A by Bergman, Waugh & Pauling (1957), was 
vacant, but, as will be shown below, this fact is 
not important for the point of view under considera- 
tion. 

The similarity of the structures of the A15CuLi3 
crystal and the A16CuLi3 quasicrystal allows us to 
restore the shells of a quasicrystal using the atomic 
coordinates in the A15CuLi3 crystal structure (De 
Boissen et al., 1989). Taking into account the fact that 
both aluminium and copper atoms are placed together 
at the same positions, we designate five independent 
aluminium and copper atoms distributed at G, A, B, 
C and F positions (Bergman, Waugh & Pauling, 
1957) by symbols A1-AS, respectively. For brevity 
the lithium atoms are marked by symbols L1-L3; 
these atoms are distributed at D, E and H positions. 
So the analysis of the quasicrystal structure A16CuLi 3 
in this paper is a reinterpretation of the experimental 
data (Elswijk et al., 1988; De Boissien et al., 1989) 
in terms of CCMAI. 

© 1991 International Union of Crystallography 



64 CRYSTAL-CHEMICAL MODEL OF ATOMIC INTERACTIONS. 5 

For clarity we suppose position A to be occupied 
by an A2 atom. The left side of Fig. 1 shows all 
coordination spheres existing in the AIsCuLi3 crystal 
around the A2 atom. Notations of atoms and dis- 

tances between any atom of a coordination sphere 
and the central A2 atom are depicted below each 
coordination polyhedron. In Fig. 1 the polyhedra 
constructed by combination of coordination spheres 
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Fig. 1. Coordination polyhedra in the AI6CuLi3 crystal structure 
(on the left) and shells of the AI6CuLi 3 quasicrystal cluster (on 
the right). Distances (/~,) from the center of coordination poly- 
hedra to atoms, distributed at its vertices, are given below each 
coordination polyhedron. Explanations are in the text. All poly- 
hedra are to scale. The dimensions of the first icosahedra are 
therefore rather small to make the size of this figure appropriate. 
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are summarized in the column at the right-hand 
side. 

The first coordination sphere of the A2 atom (x = 
y =  z = 0 )  is an icosahedron (Fig. l a l )  consisting of 
the atoms A3; it coincides with the first shell of a 
quasicrystal cluster (Fig. la) .  The second coordina- 
tion sphere is a dodecahedron with lithium atoms at 
the vertices (Fig. lb),  and the third sphere is an 
icosahedron consisting of the A4 atoms (Fig. lc). 
Thus, the sequence of polyhedra in the icosahedral 
cluster differs from the very beginning from that 
which exists in the Mackay (1962) icosahedra, and 
for this reason each polyhedron in an icosahedral 
cluster should be considered separately. 

The following polyhedron in a quasicrystal cluster 
is a truncated icosahedron (Fig. ld) ,  which is a result 
of the combination of the coordination spheres d l -  
d3. The truncated icosahedron is followed by a 
dodecahedron (Fig. le) consisting of lithium atoms 
and an icosahedron with lithium atoms at the vertices 
(Fig. lf) .  

Presumably, the coordination sphere gl  (Fig. 1) is 
important for understanding the discrepancies 
between the AIsCuLi3 crystal structure, on the one 
hand, and the A16CuLi3 quasicrystal structure, on 
the other hand. After combination of the coordination 
sphere gl  with six points placed at the vertices of an 
octahedron (Fig. lg2) inscribed into the sphere of 
the same radius (8.75 ~) ,  the icosidodecahedron (Fig. 
lg) appears. The octahedron vertices are placed at 
the 12-fold position of space group lm3.  The absence 
of atoms at this position in a crystal explains the 
discrepancy between chemical compositions of a crys- 
tal (AIsCuLi3) and a quasicrystal (AI6CuLi3). Prob- 
ably, the transformation ofa quasicrystal into a crystal 
coincides with the change of chemical composition 
of substance and with an extraction of aluminium 
atoms out of this position. This hypothesis will be 
useful hereinafter. 

The combination of three subsequent coordination 
spheres h l - h 3  (Fig. 1)yields a rhombicosidodecahe- 
dron (Fig. lh) ,  and the combination of three others 
(i1-i3) produces a truncated dodecahedron (Fig. 1 i). 
These polyhedra are followed by an icosahedron (Fig. 
1i). At the periphery of a quasicrystal cluster the 
polyhedra are distorted. This distortion has two 
aspects: (i) the lengths of the polyhedra edges are 
different, as is clearly demonstrated by a truncated 
icosahedron (Fig. 1 k); (ii) the atoms of some coordi- 
nation spheres in a crystal (for example, those depic- 
ted in Fig. l k l )  'collapse' into a cluster (compare the 
10.03/~ distance in Fig. l ( k l )  with distances from 
the cluster center to the polyhedra vertices depicted 
in neighboring figures). This peculiarity of the crystal 
structure is a consequence of the fact that the vertices 
of the g2 octahedron (Fig. 1) are vacant. Presumably, 
the icosidodecahedron lg  (Fig. 1) exists in quasicrys- 
tals as a whole, rather than partially (Fig. l g l ) ,  and 

the truncated icosahedron (Fig. lk)  has no collapses 
of vertices inside a cluster. In the case of a crystal 
structure all points forming the polyhedron depicted 
in Fig. 1 k had to be projected onto a sphere to obtain 
a proper illustration. 

The last two polyhedra in the cluster under con- 
sideration are a rhombicosidodecahedron (Fig. l l) 
and a dodecahedron (Fig. lm).  Eight of twenty ver- 
tices in a dodecahedron are filled with aluminium 
atoms, each of which is surrounded by six aluminium 
atoms belonging to i2 and 12 coordination spheres 
(Fig. 1). These six atoms are placed at icosahedron 
vertices. Let us suppose now that the complex, con- 
sisting of thirteen aluminium atoms, one of which is 
at the center and twelve others around the central 
atoms at the icosahedron vertices, is especially stable 
under conditions of solidification of the melt with 
composition A1 : Cu : Li = 6 : 1 : 3. It is worth supposing 
that an icosahedral fragment consisting of six atoms 
will be built up to the whole icosahedron, and the 
formation of the same cluster shells, as considered 
above, will again take place around it. However, prior 
to considering this process one should make two 
remarks concerning the quasicrystal structure 
described. First, aluminium atoms placed at the ver- 
tices of the coordination sphere m2 (Fig. 1) cannot 
be new centers for multishell clusters, since their inner 
coordination sphere contains both aluminium (Fig. 
1i3) and lithium atoms - il ,  ll and /3 in Fig. 1. 
Because the first coordination sphere differs in 
chemical composition from the stable complex con- 
sisting of thirteen aluminium atoms, one cannot 
expect these combinations to become the nuclei of 
new clusters. Finally, it should be noted that the A2 
atoms can be absent at positions of type A, as was 
pointed out by De Boissien et al. (1989). In this case 
the central body in a multishell cluster should be 
supposed to be an icosahedron with a vacant center. 
This supposition has no influence on the analysis 
made above. Second, the three last coordination 
spheres of a crystal, depicted in the last row of Fig. 
1, seem to be extracted from the sequence of poly- 
hedra with distances from the center to the vertices 
less than 12.22 A. This is explained by the fact that 
for the inclusion of these polyhedra into the analysis 
it is necessary to build up a few subsequent coordina- 
tion spheres and combine them with the polyhedra 
depicted at the end of Fig. 1. But this information 
would be redundant, as a quasicrystal does not consist 
of an infinite sequence of shells, but obeys the follow- 
ing rule. 

Thirteen aluminium atoms (twelve placed at the 
icosahedron vertices and one atom at the center of 
this icosahedron) play the part of the nucleus in a 
multishell cluster. Just after such nuclei are formed 
at the cluster periphery, the growth of an initial cluster 
must inevitably compete with the growth of clusters 
around new nuclei. The growth of new clusters seems 
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to be preferable, because a total of eight clusters fills 
the space around an initial cluster faster than the 
initial cluster only. This process drastically differs 
from crystallization in the respect that the quasicrystal 
shells do not penetrate into each other, as was noticed 
in crystals (Aslanov, 1988a, 1989b). The fivefold sym- 
metry does not allow the shells to do this. Any shell 
of an attached cluster represents a fragment of the 
polyhedra depicted on the right-hand side in Fig. 1. 
Such fragments adjoin an initial cluster and have new 
nuclei of clusters at their periphery, so that the growth 
process starts again. 

The general idea of the structure of the initial 
multishell cluster is depicted in Fig. 2. The icosahe- 
dral nucleus corresponding to the icosahedron in Fig. 
l (a )  is situated at the center of the cluster. It is shaded 
by dots to show that it consists of the aluminium 
atoms only. The intermediate shells (Figs. 1 b-h, j, k) 
are omitted for clarity. The combination of the shells 
indicated by indices i and l in Fig. 1 gives twenty 
semiicosahedra which can be built up to form the 
whole icosahedron, as is demonstrated in Fig. 2. The 
centers of these icosahedra are distributed at the 
vertices of a dodecahedron (Fig. 1 m). But this is the 
geometry of a cluster. The chemical composition of 
the icosahedra ought to be taken into consideration. 
Only eight icosahedra consisting of the aluminium 
atoms exist in reality as explained above. They are 
distributed at the vertices of the cube and shaded 
with dots. All other positions are possible if a cube 
is chosen inside the dodecahedron in the other 
orientation, but not as it is shown in Fig. 2. 

All icosahedra including the central one are orien- 
ted uniformly with respect to each other. This precise 

_ ! iii :i̧̧!̧i̧ii̧ I !  

Fig. 2. The distribution of  the icosahedral nuclei of  the initial 
cluster in the icosahedral quasicrystals. The dotted icosahedra 
consist of  the aluminium atoms only (the nuclei of  the clusters). 
The blank icosahedra are the alternative places of the icosahedral 
nuclei of  the clusters. All icosahedra have an orientational order. 
The solid lines between the icosahedra are the edges of  a 
dodecahedron. 

orientation of the icosahedra is valid throughout the 
quasicrystal because of the coincidence of the ele- 
ments of symmetry of all she.Us of the cluster including 
shells a, i, l (Fig. 1). 

The adjoining fragments of clusters have only some 
of the symmetry elements of the initial cluster, and 
small fragments can have no symmetry elements at 
all. But if any adjoining cluster fragment is built up 
mentally to give the whole cluster, all its symmetry 
elements will be either parallel to or coincide with 
symmetry elements of an initial cluster. This situation 
takes place because the icosahedral nuclei of all 
clusters are oriented uniformly with respect to the 
initial cluster and, therefore, with respect to each 
other. This important point of quasicrystal formation 
should be discussed in detail. 

It is worth paying attention to the fact that eight 
triangular faces of a truncated dodecahedron (Fig. 
1i) are shared with icosahedra (Fig. l a )  which are 
the nuclei of adjoining clusters. If a shell depicted at 
Fig. 1(i) is a real Archimedean semiregular solid and 
adjoining icosahedra (Fig. l a )  are the real Platonic 
regular solids all symmetry elements of these solids 
are parallel or coincident provided these polyhedra 
share the triangular faces. 

It is necessary to point out the fact that only eight 
of the twenty dodecahedron vertices are centers of 
adjoining clusters (they are arranged as a cube). There 
are a few combinations of eight dodecahedron ver- 
tices giving a cube. At the quasicrystal formation the 
choice of combination is a stochastic one. Each com- 
bination has an individual distribution of the icosahe- 
dral nuclei of adjoining clusters around the initial 
cluster, but the icosahedral nuclei are oriented per- 
fectly with respect to the initial cluster in any position. 
So the quasicrystal has no translational symmetry, 
but has a perfect orientation of all icosahedral nuclei. 
The previous analysis (Aslanov, 1989a, b) did not 
take into account the stochastic distribution of the 
icosahedral nuclei and a model contained the transla- 
tional symmetry for the first coordination shell. This 
problem of the quasicrystal structures will be dis- 
cussed at the end of this paper, and it is now worth 
considering one more example of a quasicrystal 
structure. 

The structure of the AllooMn24Si~4 quasicrystal was 
solved by Cahn, Gratias & Mozer (1988a, b) (see also 
Gratias, Cahn & Mozer, 1988). The crystal compound 
of the same composition has essentially the same 
structure (Cooper & Robinson, 1966) as a quasicrys- 
tal. The Al10oMn24Si~4 crystals have space group Pro3, 
a = 12.68 ( 2 ) ~ .  Their structure differs only slightly 
from b.c.c., and because of these differences two types 
of clusters should be considered, namely (i) the center 
is at point 0, 0, 0, and (ii) the center coincides with 
point ½, ½, ½. We will repeat below just the same pro- 
cedure which was performed for the quasicrystal 
structure Al6CuLi3: the reinterpretation of the 
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experimental data for the quasicrystal structure 
AllooMn24Si14 (Cahn, Gratias & Mozer, 1988a, b; 
Gratias, Cahn & Mozer, 1988; Cooper & Robinson, 
1966) will be fulfilled in terns of CCMAI. 

All shells of both clusters with the coordination 
polyhedra in a crystal are depicted in Fig. 3. They 
were built in accordance with the atomic positional 
parameters published by Cooper & Robinson (1966). 
The centers of both clusters are vacant. The 
aluminium and silicon atoms (roentgenographically 
undistinguishable) are designated by indices A1-A9,  
the manganese atoms have indices M1 and M2. Fig. 
3 needs a minimum of comment after analysis of the 
AI6CuLi3 structure. To be brief, the a, c, e, h, k, l, s 
polyhedra are icosahedra, p is a cuboctahedron, 
b, f, m, q are icosidodecahedra, d, j, n, u are distorted 
rhombicosidodecahedra, g, r are distorted truncated 
icosahedra, i, t are distorted truncated dodecahedra. 
The more the distance between the cluster center and 
the coordination shell atoms, the greater the deforma- 
tion of polyhedra. This is due to the deformations of 
clusters appearing in a transition from a quasicrystal 
to a crystal state. The two last polyhedra in each 
cluster (Figs. 3i, j, t, u) are deformed so much that 
their pictures had to be obtained by the projection 
of the vertices of respective coordination polyhedra 
i l- i3,  j l - j 3 ,  t l - t3 ,  u l -u3  (Fig. 3) on the sphere. 
Perhaps the coordination polyhedra i3 and j l  (as 
well as i3 and u 1) should be interchanged. This allows 
one to lower the scattering of distances from the 
cluster center to the vertices of coordination poly- 
hedra in a crystal combined in one shell of a quasi- 
crystal. But in this case the trigonal and pentagonal 
faces of the i, j, t, u polyhedra in Fig. 3 will be de- 
formed more strongly. In fact, this rearrangement 
changes nothing, so that one can consider the variant 
depicted in Fig. 3 only. 

Atoms A5 (Figs. 3il ,  j3) and A4 (Figs. 3t l ,  u3) 
arrange halves of the icosahedra with centers of these 
icosahedra at the vertices of a cube. Let us assume 
that the icosahedral cluster with aluminium atoms at 
the vertices of an icosahedron is the most stable 
complex appeared during the solidification of a melt 
with composition A1 : Mn : Si = 1000: 24: 14. One can 
assume that any of eight halves of an icosahedron at 
the cluster periphery is built up to the whole 
icosahedra, and all of them become nuclei of new 
clusters. The other twelve atomic groups with six 
atoms in each group (i2, i 3 , j l , j 2  in a cluster with 
center at point 0, 0, 0 and t2, t3, ul ,  u2 in a cluster 
with center at point ½, ½, ½ in Fig. 3) cannot arrange 
icosahedra, because they include manganese atoms 
(i3 and t3) together with aluminium atoms, and this 
is why these groups of atoms are most strongly de- 
formed during the transformation to a crystal. In a 
quasicrystal these groups of atoms do not arrange the 
nuclei of new clusters because of the presence of 
manganese atoms. 

Presumably, clusters with centers at 0, 0, 0 and 
!2, !2, !2 have no difference in a quasicrystal. The transpo- 
sition of b, c polyhedra (Fig. 3) in the first cluster in 
comparison with l, m polyhedra (Fig. 3) in the second 
is a formality, as a small change in distance from the 
centers of clusters to atoms due to the transformation 
of a quasicrystal into a crystal is quite permissible. 

Analyzing Figs. 1 and 3 one can conclude that the 
idea of the quasicrystal structure demonstrated in Fig. 
2 is valid for Al,ooMn24Si,4 as much as for A16CuLi3. 
The peripheral shells in both quasicrystals are a trun- 
cated dodecahedron (Fig. 1i, Figs. 3i, t) followed by 
a rhombicosidodecahedron (Fig. 1/, Figs. 3j, u) and 
the symmetry elements coincide with those of the 
icosahedral nuclei (the first shell of the cluster - Fig. 
la  and Figs. 3a, k). 

So, the quasicrystal has the only center in an initial 
multishell cluster, and all other clusters are the frag- 
ments of an initial one adjoining each other as demon- 
strated in Fig. 4(a). The initial cluster is schematically 
shown in Fig. 4(a) as three concentric circles (shells) 
with center at point O. The adjoining fragments of 
clusters with centers at points M,,, and Nn are 
equivalent within the rows M,,, or Am, but any of the 
M,,, fragments is not equivalent to any of the N, 
fragments. 

To make clearer the description of a quasicrystal 
structure, Fig. 4(b) shows schematically the crystal 
structure as proposed by CCMAI. All multispherical 
complexes are identical and interpenetrate each 
other, so that all centers of complexes are identical 
too. As a result, translational symmetry arises 
throughout the crystal. 

The proposed model of a quasicrystal structure 
does not contradict a widely used concept based on 
the 3D PT. The statement of the problem discussed 
above shows that the quasicrystal structure formation 
principles proposed earlier (Aslanov, 1989a, b) and 
developed here are confirmed by experimental facts, 
and proves once again the correctness of CCMAI 
which gives the only explanation for the very tight 
resemblance of the crystal and quasicrystal structures 
of the substances under consideration. 

The special sort of quasicrystals which is intermedi- 
ate between the real quasicrystal and the crystal was 
predicted (Aslanov, 1989a, b). In Fig. 4(a) none of 
M,,, fragments coincides with any of the Nn frag- 
ments; but there is a fraction of fragments (Fig. 4c) 
which is common for M,,, and' N,.  Hence, the transla- 
tional symmetry, for a row, depicted in Fig. 4(a) 
exists only for icosahedral nuclei (th~ first shells), 
and for fragments of other shells depicted in Fig. 
4(c). Let us imagine that at the periphery of an 
initial cluster with center at point O (Fig. 4a) there 
are both icosahedral nuclei with centers at points 
MI, N~ in the horizontal direction and two more 
icosahedral nuclei in directions inclined at 70, 53 ° 
(the angles between the threefold axes in the cube and 



68 C R Y S T A L - C H E M I C A L  M O D E L  O F  A T O M I C  I N T E R A C T I O N S .  5 
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Fig. 3. Coordination polyhedra in the Al~ooMn24Si,4 crystal structure (on the left) and shells of the quasicrystal cluster of the same 
composition (on the fight). Distances (/~) from center of coordination polyhedra to atoms, distributed at its vertices, are given below 
each coordination polyhedron. Polyhedra (a)-(j) belong to the clOster with center at point 0, 0, 0; polyhedra (k)-(u) belong to the 
cluster with center at point ½, 2'-, ½. Explanations are in the text. All polyhedra are to scale. The dimensions of the first icosahedra are 
therefore rather small to make the size of this figure appropriate. 
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dodecahedron) with respect to the horizontal direc- 
tion. Then in the inclined row of cluster fragments 
there will be the same translational symmetry, as in 
the horizontal row (Fig. 4a), but Fig. 4(c) should be 
turned at 70, 53 ° around point O. It can easily be 
shown that both rows have translational symmetry 
for the first (icosahedral) shells only, because the 
other shells have no common atoms. This aggregate 
of atoms consists of two subsystems of atoms. One 
of them consists of central atoms and atoms of the 
first icosahedral shell of clusters. This subsystem has 
translational symmetry over all of a quasicrystal. The 
other subsystem of atoms consists of fractions of the 
second and subsequent shells of clusters. These frac- 
tions have different orientations in space, so that there 
is no translational symmetry in this subsystem of 
atoms, generally, in spite of the fact that inside separ- 
ate parts of this atomic subsystem there exists a local 
translational symmetry coinciding with the symmetry 
of the first subsystem of atoms, as was shown above. 
Now there are experimental data which support this 
prediction. 

Mai, Zhang, Hui, Huang & Chen (1988) and Mai, 
Tao, Zeng & Zhang (1988) found that an alloy with 
composition AI6CuLi3 annealed 1 h at 888 K and 
quenched in water has a very peculiar structure which 
combines both crystal and quasicrystal properties. 
There are six important experimental results in favor 
of this point of view. 

First, a single quasicrystal with dimensions 4x  
4 mm was investigated with a narrow X-ray beam and 
the same diffraction pictures were received at every 
point of this single quasicrystal. This proved that there 

(a) 

(b) 

G @ 

(c) 

Fig. 4. (a) Schematic drawing of a quasicrystal; (b) schematic 
drawing of a crystal; (c) fractions of clusters with translation 
symmetry. 

was a single quasicrystal but not an alloy consisting 
of a mixture of crystals and quasicrystals. 

Second, all precession photographs contained 
reflections of two types: one set of reflections corre- 
sponded to the reciprocal lattice of a crystal, but the 
other set belonged to a quasicrystal. 

Third, the precession photographs along the five- 
fold axis have mirror planes. One can draw two sets 
of lines through the diffraction spots and parallel to 
a mirror plane and in the perpendicular direction. 
The spacing between the lines in the first set is not 
variable. It corresponds to a crystal cell dimension 
of 13.9 tl,. But the spacing of the lines in the second 
set is like an incommensurate phase with a golden 
ratio. In accordance with the model described earlier 
(Aslanov, 1989a, b) three of fifteen planes of an 
icosahedron coincide with three of nine planes of a 
cube. These planes are perpendicular to a fourfold 
axis of a cube. All fivefold axes of an icosahedron 
belong to these planes. As an edge of the cubic 
elementary cell is perpendicular to these planes the 
precession photographs along a fivefold axis contain 
rows of reflections perpendicular to a mirror plane 
and spacing between reflections inside these rows 
corresponds to 13.9/~. The fivefold axes of an 
icosahedron do not coincide with any rational direc- 
tion of the cube situated in indicated mirror planes 
so the distribution of the reflections on the precession 
photographs corresponds to a quasicrystal. 

Fourth, there are two groups of precession photo- 
graphs taken along the threefold axis of an icosa- 
hedron (Mai, Tao, Zeng & Zhang, 1988). The first 
group contains four photographs taken along a three- 
fold axis of an icosahedron which correspond to a 
threefold axis of a cube. The symmetry of these photo- 
graphs contains a threefold axis. But six photographs 
of the other threefold axis of an icosahedron have no 
threefold symmetry. These experimental results can 
be explained by the fact that all four threefold axes 
of the cube can be matched with four threefold axes 
of an icosahedron. The first group of precession 
photographs contains the reflections generated by a 
translationally symmetrical atomic subsystem with 
cell dimension 9.8/~ (Mai, Zhang, Hui, Huang & 
Chen, 1988). This value is equal to half of the face 
diagonal of the cube if the edge of this cube is 13.9 A. 
This means that a Bravais cell is b.c.c., which corre- 
sponds to the crystal structure A15CuLi3 and the quasi- 
crystal structure A16CuLi 3 described above. 

Fifth, fifteen precession photographs along the 
twofold axis (Mai, Tao, Zeng, & Zhang, 1988) were 
divided into two groups - three of them have two 
mutally normal mirror planes, the others do not. For 
an explanation of this fact it should be mentioned 
that no one twofold axis of an icosahedron (there are 
15 such axes) coincides with the six twofold axes of 
a cube, but three twofold axis of these 15 coincide 
with a fourfold axis of a cube. Any of these three 
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axes should give a precession photograph with two 
mirror planes normal to each other, but all other 
twofold axes of the quasicrystal should give photo- 
graphs with no plane at all. 

Sixth, the stereographic projection of the symmetry 
elements observed in this quasicrystal by Mai, Tao, 
Zeng & Zhang (1988) clearly indicates the consistency 
of the threefold and twofold axes with the threefold 
and fourfold axes of a cube respectively. 

So a model of a quasicrystal structure including 
the hypothesis of the special sort of quasicrystal con- 
taining the translationally symmetrical subgroup of 
atoms was supported by experimental facts. 

Attention has been concentrated in this paper on 
an explanation of quasicrystal structures taking into 
consideration the principles of CCMAI. But as a 
result one can make a conclusion about the efficiency 
of the CCMAI as a common theoretical background 
for both crystals and quasicrystals. 
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Abstract 

Basic group-theoretical properties of the icosahedral 
point groups are derived. Here are given the permuta- 
tions of the vertices of an icosahedron under the 
action of the elements of the icosahedral point groups, 
the icosahedral point groups' multiplication tables, 
subgroups, sets of conjugate subgroups, centralizers 
and normalizers of arbitrary subsets and coset and 
double coset decompositions. 

I. Introduction 

Basic group-theoretical properties of the 32 crystallo- 
graphic point groups have been tabulated by Janovec, 
Dvorakova, Wike & Litvin (1989). Here, we extend 
that work to the icosahedral point groups. Icosahedral 
point groups have been of interest in connection with 
the vibrational (Boyle & Parker, 1980) and electronic 
properties (Boyle, 1972) of icosahedral molecules. 

Much work has been done on the coupling coefficients 
of the icosahedral groups, see for example Golding 
(1973), Boyle & Ozgo (1973), Pooler (1980) and 
Fowler & Ceulemans (1985). The representations of 
the icosahedral group have been studied by Back- 
house & Gard (1974) and polynomial invariants by 
Cummins & Patera (1988). Additional interest in the 
icosahedral groups stems from the icosahedral sym- 
metry of biological macromolecules (Litvin, 1975) 
and the discovery of quasicrystals (Shechtman, Blech, 
Gratias & Cahn, 1984; see also Nelson, 1986). 

In § 2 we define the icosahedral groups in terms of 
the symmetry of an icosahedron inscribed in a cube. 
In § 3 we give the permutations of the vertices of the 
icosahedron under the action of the elements of the 
icosahedral point groups, the icosahedral point 
groups' multiplication tables, subgroups, sets of con- 
jugate subgroups, centralizers and normalizers of 
arbitrary subsets, and coset and double coset 
decompositions. 
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